马佳雯, 杨志娇, 王宇航, 等. 局部尺度效应对地形起伏度的影响——以阿尔泰-喀纳斯和卡拉麦里国家公园潜力区为例[J]. 自然保护地,2024,4(0):1−13. DOI: 10.12335/2096-8981.2024011202
引用本文: 马佳雯, 杨志娇, 王宇航, 等. 局部尺度效应对地形起伏度的影响——以阿尔泰-喀纳斯和卡拉麦里国家公园潜力区为例[J]. 自然保护地,2024,4(0):1−13. DOI: 10.12335/2096-8981.2024011202
MA J W, YANG Z J, WANG Y H, et al. Topographic relief extraction and optimal analysis window selection research: a case study of the Altai-Kanas and Karamayli National Park Potential Areas[J]. Natural Protected Areas, 2024, 4(0): 1−13. DOI: 10.12335/2096-8981.2024011202
Citation: MA J W, YANG Z J, WANG Y H, et al. Topographic relief extraction and optimal analysis window selection research: a case study of the Altai-Kanas and Karamayli National Park Potential Areas[J]. Natural Protected Areas, 2024, 4(0): 1−13. DOI: 10.12335/2096-8981.2024011202

局部尺度效应对地形起伏度的影响以阿尔泰-喀纳斯和卡拉麦里国家公园潜力区为例

Topographic relief extraction and optimal analysis window selection research: a case study of the Altai-Kanas and Karamayli National Park Potential Areas

  • 摘要:
    目的 地形起伏度是量化地貌特征、描述区域地貌的关键指标,采用均值变点法确定最佳分析窗口对地势起伏度提取与区域地貌分析意义重大。
    方法 基于均值变点法,选取地形起伏较大的阿尔泰-喀纳斯潜力区和地形平坦、起伏较小的卡拉麦里潜力区为研究区域,以广泛应用的30 m、90 m空间分辨率的数字高程模型(DEM)为基础数据,结合地貌特征并基于两个研究区域的地势起伏度分类结果选择最佳分析窗口。
    结果 ①对于最佳分析窗口面积,90 m空间分辨率DEM总体比30 m空间分辨率大,平均面积增长率22.66%;同时,面积范围越大,最佳分析窗口也会相应增大,但相同面积范围下两个研究区域最佳分析窗口差距不明显。②结合地势起伏度分级数据及图层,30 m空间分辨率基础数据下的60×60(3.240 0 km2)是阿尔泰-喀纳斯潜力区最佳地形起伏度分析窗口,90 m空间分辨率基础数据下的17×17(2.340 9 km2)是卡拉麦里潜力区地形起伏度最佳分析窗口。
    结论 地形起伏度研究过程中,地貌特征不同的区域,其适宜的基础DEM数据空间分辨率和最佳窗口存在差异:地势起伏度较平缓的区域可采用较低空间分辨率的DEM数据,对应较小的分析窗口;而地势起伏度较大的区域应采用较高空间分辨率的DEM数据,对应较大的分析窗口。

     

    Abstract:
    Objectives Terrain relief is a crucial indicator for quantifying topographic features and describing regional landforms. The application of the mean change point method to determine the optimal analysis window is of significant importance for extracting terrain relief and conducting regional landform analysis.
    Methods The study selected the Altai-Kanas potential area, which exhibited significant topographic relief and the Kalameili potential area, which featured relatively flat terrain and small relief as the research areas. The study employed widely DEM data with spatial resolutions of 30m and 90m were employed as the base data. The optimal analysis window was determined through the application of the mean change point method, with consideration given to the landform features and the classification results of terrain relief in the two study areas.
    Results The results demonstrated that: (1) The optimal analysis window area exhibited a larger overall area when a 90m spatial resolution DEM was employed, as compared to a 30m spatial resolution, with an average area growth rate of 22.66%. Meanwhile, as the area range increased, the optimal analysis window also increased in accordance with this expansion. However, the discrepancy in the optimal analysis window between the two study areas was not significant under the same area range. (2) By integrating terrain relief classification data and layers, a 60×60 (3.2400 km2) window was identified as the optimal terrain relief analysis window for the Altai-Kanas potential area using 30m spatial resolution base data, while a 17×17 (2.3409 km2) window was determined as the optimal terrain relief analysis window for the Kalameili potential area using 90m spatial resolution base data.
    Conclusion In the process of studying terrain relief, regions with different landform characteristics exhibit variations in the suitable spatial resolution of base DEM data and optimal windows. Areas with gentle terrain relief may use DEM data with lower spatial resolution and smaller analysis windows, while areas with significant relief should employ DEM data with higher spatial resolution and larger analysis windows.

     

/

返回文章
返回