林辉, 骆剑承, 詹立明, 等. 基于高分辨率遥感影像的浙江省森林资源调查因子识别度研究[J]. 自然保护地,2021,1(3):90−101. DOI: 10.12335/2096-8981.2021031002
引用本文: 林辉, 骆剑承, 詹立明, 等. 基于高分辨率遥感影像的浙江省森林资源调查因子识别度研究[J]. 自然保护地,2021,1(3):90−101. DOI: 10.12335/2096-8981.2021031002
LIN Hui, LUO Jiancheng, ZHAN Liming, et al. Research on Recognition Degrees of Forest Resource Inventory Elements of Zhejiang Province Based on Remote Sensing Images with High Resolution[J]. Natural Protected Areas, 2021, 1(3): 90−101. DOI: 10.12335/2096-8981.2021031002
Citation: LIN Hui, LUO Jiancheng, ZHAN Liming, et al. Research on Recognition Degrees of Forest Resource Inventory Elements of Zhejiang Province Based on Remote Sensing Images with High Resolution[J]. Natural Protected Areas, 2021, 1(3): 90−101. DOI: 10.12335/2096-8981.2021031002

基于高分辨率遥感影像的浙江省森林资源调查因子识别度研究

Research on Recognition Degrees of Forest Resource Inventory Elements of Zhejiang Province Based on Remote Sensing Images with High Resolution

  • 摘要: 高分辨率遥感影像在森林资源调查中的应用,对减少外业工作量、提高准确性都具有重要意义。以浙江省为研究区域,基于0.5 m空间分辨率的遥感影像,通过目视解译,根据森林资源调查因子在高分辨率遥感影像上反映的程度研究识别度。对地类、竹林、乔木树种和龄组、经济树种、树种组成和蓄积的识别进行了详细分析,并以实例影像解释说明识别度;结论将识别度划分为强识别、可识别、弱识别和不识别4类;还讨论了综合性、物候性、相对性、地域性、现地调查、数据源等方面对识别度的影响。系统地梳理了各项因子的影像特征及可识别情况,对高分辨率遥感影像在森林资源调查中的应用具有指导作用。

     

    Abstract: The deep application of high-resolution remote sensing images in forest resource inventory is of great significance to reducing the field survey and improve accuracy. Based on the remote sensing image of 0.5 meters spatial resolution in Zhejiang Province, the recognition degree is studied according to the degree reflected by the forest resource survey factor in the high-resolution remote sensing image by visual interpretation. The paper analyses in detail the recognition of land categories, bamboo forests, arbor tree species and age group, economic tree species, tree species composition, and forest stock, and interprets recognition degrees of them in exemplary figures. The recognition degrees are divided into four categories: strong recognizable, recognizable, weak recognizable, and unrecognizable. Simultaneously, it also discusses effects on recognition from aspects of comprehensiveness, phenological nature, relativity, regionality, and survey on spot and data source. The study lists systematically the image characteristics and identifiable conditions of various factors, which can guide the application of high-resolution remote sensing images in forest resources inventory.

     

/

返回文章
返回