贾坤, 刘端阳, 姚云军, 等. 基于高分二号数据的自然保护区生态用地遥感分类研究—以衡水湖国家级自然保护区为例[J]. 自然保护地,2021,1(2):68−74. DOI: 10.12335/2096-8981.2021011101
引用本文: 贾坤, 刘端阳, 姚云军, 等. 基于高分二号数据的自然保护区生态用地遥感分类研究—以衡水湖国家级自然保护区为例[J]. 自然保护地,2021,1(2):68−74. DOI: 10.12335/2096-8981.2021011101
JIA Kun, LIU Duanyang, YAO Yunjun, et al. Remote Sensing Classification of Ecological Land in the Nature Reserve Based on Gaofen-2 Satellite Data: A Case Study on Hengshui Lake National Nature Reserve[J]. Natural Protected Areas, 2021, 1(2): 68−74. DOI: 10.12335/2096-8981.2021011101
Citation: JIA Kun, LIU Duanyang, YAO Yunjun, et al. Remote Sensing Classification of Ecological Land in the Nature Reserve Based on Gaofen-2 Satellite Data: A Case Study on Hengshui Lake National Nature Reserve[J]. Natural Protected Areas, 2021, 1(2): 68−74. DOI: 10.12335/2096-8981.2021011101

基于高分二号数据的自然保护区生态用地遥感分类研究以衡水湖国家级自然保护区为例

Remote Sensing Classification of Ecological Land in the Nature Reserve Based on Gaofen-2 Satellite Data: A Case Study on Hengshui Lake National Nature Reserve

  • 摘要: 以衡水湖国家级自然保护区为研究区,基于高分二号(GF-2)卫星多光谱数据,采用面向对象的支持向量机分类方法,实现了研究区内生态用地的遥感分类。研究结果表明:GF-2卫星数据可以较好地实现研究区内生态用地的遥感分类,总体分类精度为92.62%,Kappa系数为0.875。因此,GF-2卫星数据采用面向对象的支持向量机分类方法在自然保护区生态用地遥感分类中表现较好,具有应用推广价值。

     

    Abstract: This study takes Hengshui Lake National Nature Reserve as the study area, and uses object-oriented support vector machine classification method to achieve the ecological land classification based on the GF-2 satellite multi-spectral data. The results indicated that the GF-2 satellite data could achieve satisfactory performance on remote sensing classification of ecological land in the study area with the overall classification accuracy of 92.62% and Kappa coefficient of 0.875. Therefore, the GF-2 satellite data have good performances in ecological land classification in nature reserves and object-oriented support vector machine classification method is a suitable strategy, which provides references for further application of GF-2 satellite data.

     

/

返回文章
返回