黄兴召, 豆玉萍, 黄庆丰, 等. 异速参数先验信息对生物量方程拟合的影响[J]. 自然保护地,2021,1(1):91−99. DOI: 10.12335/2096-8981.2020111802
引用本文: 黄兴召, 豆玉萍, 黄庆丰, 等. 异速参数先验信息对生物量方程拟合的影响[J]. 自然保护地,2021,1(1):91−99. DOI: 10.12335/2096-8981.2020111802
HUANG Xingzhao, DOU Yuping, HUANG Qingfeng, et al. The Effect of Parameter Prior Information on the Allometric Biomass Equation Fitting[J]. Natural Protected Areas, 2021, 1(1): 91−99. DOI: 10.12335/2096-8981.2020111802
Citation: HUANG Xingzhao, DOU Yuping, HUANG Qingfeng, et al. The Effect of Parameter Prior Information on the Allometric Biomass Equation Fitting[J]. Natural Protected Areas, 2021, 1(1): 91−99. DOI: 10.12335/2096-8981.2020111802

异速参数先验信息对生物量方程拟合的影响

The Effect of Parameter Prior Information on the Allometric Biomass Equation Fitting

  • 摘要: 研究异速方程参数先验信息ab的区域差异和树种差异对异速生物量方程拟合的影响,揭示先验信息对立木生物量预估的作用规律,为先验信息的选取和立木生物量的精准预估提供依据。以异速生物量方程为拟合对象,以热带、温带和寒带三个气候区以及栎属、桦木属、杨属、槭属、桉属和松属六个属参数ab的均值和协方差矩阵为先验信息,以日本落叶松立木地上部分生物量数据为拟合数据,利用贝叶斯方法,基于无重复抽样进行1 000次无重复拟合。先验信息的气候区差异和树种差异对异速生物量方程的拟合效果影响不显著,而对方程的预估效果影响显著(P<0.01)。总数据集和温带先验信息预估的平均偏差MB和平均均方根差MRMSE优于寒带和热带,验证了区域作为先验信息的环境因子影响生物量的预估精度,选择立木生长所属气候区的先验信息可以提升方程的预估效果。比较不同属先验信息方程拟合的预估效果,松属和栎属>总数据集和桉属>桦木属>杨属>槭属,说明树种作为先验信息的生物学特性影响生物量的预估精度。但是,落叶松属与松属的生物学关系>落叶松属与桉属>落叶松属与槭属>落叶松属与杨属>落叶松属与栎属>落叶松属与桦木属,先验信息生物学特性的预估效果表现规律与树种的生物学关系不一致。利用贝叶斯方法拟合立木生物量方程时,利用先验信息的气候和生物学特性,能够提升模型的预估精度。

     

    Abstract: The aim of this study is to research the effects of prior information differences in regions and tree species on allometric biomass equation fitting, revealing the regularity which accurately select the prior information to improve the prediction of standing wood biomass. The mean and covariance matrix of parameters a and b are collected as prior information, coming from three regions of tropical, temperate, boreal and six genus of Quercus, Betula, Populus, Acer, Eucalyptus, Pinus and the above ground biomass data of Larix kaempferi is used to fit the allometric biomass equation. The data, based on the non-repetitive sampling 1 000 times is fitted by using the different prior information of Bayesian method. The regional and tree species difference of prior information had no significant influence on fitting effect of allometric biomass equation. However, it had significant influence on the predictive effect (P<0.01). MB and MRMSE evaluated from the total data and temperate are better than those of boreal and tropical, proving that regional factor affect the estimation accuracy of the allometric biomass equation and the prior information of selecting the region where the tree growth improves. In the process of tree species fitting, the predictive as prior information is Pinus and Quercus > the total data and Eucalyptus > Betula> Populus > Acer, indicating that tree species are the biological characteristics affecting the prior information. However, the biological relationship between Larix and Pinus > Larix and Eucalyptus > Larix and Acer > Larix and Populus > Larix and Quercus > Larix and Betula which are not consistent with the biological relationship between tree species. When using the Bayesian method to fit the allometric biomass equation, both environmental and genetic factors will improve the predictive accuracy of the model.

     

/

返回文章
返回