留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自然的解决方案:应对水资源危机

罗永梅 毕云天 葛乐 张小全

罗永梅, 毕云天, 葛乐, 等. 基于自然的解决方案:应对水资源危机[J]. 自然保护地,2021,1(4):1−9 doi:  10.12335/2096-8981.2021072802
引用本文: 罗永梅, 毕云天, 葛乐, 等. 基于自然的解决方案:应对水资源危机[J]. 自然保护地,2021,1(4):1−9 doi:  10.12335/2096-8981.2021072802
LUO Yongmei, BI Yuntian, GE Le, et al. Nature-Based Solutions for Water Crisis[J]. Natural Protected Areas, 2021, 1(4): 1−9 doi:  10.12335/2096-8981.2021072802
Citation: LUO Yongmei, BI Yuntian, GE Le, et al. Nature-Based Solutions for Water Crisis[J]. Natural Protected Areas, 2021, 1(4): 1−9 doi:  10.12335/2096-8981.2021072802

基于自然的解决方案:应对水资源危机

doi: 10.12335/2096-8981.2021072802
基金项目: 自然保护公益伙伴计划合作项目
详细信息
    通讯作者:

    E-mail:le.ge@tnc.org

  • 中图分类号: X171.4;X52

Nature-Based Solutions for Water Crisis

  • 摘要:

    水是人类社会可持续发展的核心资源之一,对人类生存、社会经济发展和生态系统健康至关重要。水是影响气候变化的核心要素之一,是气候系统、人类社会与环境之间的重要纽带。世界正面临着水资源短缺和水质严重恶化两大困境。基于自然的解决方案(Nature-based Solutions,NbS),利用保护生态系统(森林、湿地、河流等)、对绿色基础设施进行投资(如造林和湿地修复等)、可持续管理(如保护性耕作)等措施,通过对供水和水质两方面的管理来应对上述挑战,增加可用水量,提高用水效率,从源头到城市保证用水质量。NbS应用于水资源管理将带来广泛的协同效益,包括改善人类健康、生物多样性、改善生计以及减缓和适应气候变化,因此,NbS也为水资源管理提供了全新的选择。目前,水资源管理开始从基于工程技术的管理,转向基于工程技术与NbS相结合的管理,未来需以更符合自然规律的方式来应对水危机,实现从对抗自然到顺应自然的转变,扩大NbS在水资源管理中所占的比重。

  • 图  1  人均可再生内陆淡水资源[13]

    Figure  1.  Per capita renewable inland freshwater resources [13]

    图  2  国际用水效率对比[15]

    Figure  2.  International water use efficiency comparison diagram

    图  3  人类活动带来的压力与生态系统、生态系统服务之间的关系[21]

    Figure  3.  Relations between pressure from human activities and ecosystem and ecosystem services

  • [1] HLPE Michel. Water for Food Security and Nutrition. A Report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security[R]. Rome: Food and Agriculture Organization of the United Nations, 2015.
    [2] WWAP. The United Nations World Water Development Report 2015: Water for a Sustainable World[R]. Paris: UNESCO, 2015.
    [3] WWAP. The United Nations World Water Development Report 2017: Wastewater: An Untapped Resource[R]. Paris: UNESCO, 2017.
    [4] Hoekstra A Y, Mekonnen M M. The Water Footprint of Humanity[J]. Proceedings of the National Academy of Sciences, 2012, 109(9): 3232−3237. doi:  10.1073/pnas.1109936109
    [5] WWAP. The United Nations World Water Development Report 2018: Nature-Based Solutions for Water[R]. Paris: UNESCO, 2018.
    [6] WHO. Global Costs and Benefits of Drinking Water Supply and Sanitation Interventions[R]. Geneva: World Health Organization, 2012.
    [7] FAO. The State of Food and Agriculture 2020. Overcoming Water Challenges in Agriculture[R]. Rome: Food and Agriculture Organization of the United Nations, 2020.
    [8] WEF. Global Risks Report[R]. Cologny: World Economic Forum, 2020.
    [9] IPCC. Summary for Policymakers. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge: Cambridge University Press, 2014: 1−32.
    [10] UNEP. A Snapshot of the World’s Water Quality: Towards a Global Assessment[R]. Nairobi: The United Nations Environment Programme, 2016.
    [11] Veolia, IFPRI. The Murky Future of Global Water Quality: New Global Study Projects Rapid Deterioration in Water Quality[R]. Washington, DC: International Food Policy Research Institute, 2015.
    [12] 陈雷. 新时期治水兴水的科学指南——深入学习贯彻习近平总书记关于治水的重要论述[J]. 求是, 2014(15): 47−49.
    [13] 国家统计局. 2020中国统计年鉴[R]. 北京: 中国统计出版社, 2020: 236.
    [14] 王浩, 王建华. 中国水资源与可持续发展[J]. 中国科学院院刊, 2012, 27(3): 352−358,331. doi:  10.3969/j.issn.1000-3045.2012.03.014
    [15] 刘晶, 鲍振鑫, 刘翠善, 等. 近20年中国水资源及用水量变化规律与成因分析[J]. 水利水运工程学报, 2019(4): 31−41. doi:  10.12170/201904005
    [16] 张建云, 王国庆, 金君良, 等. 1956—2018年中国江河径流演变及其变化特征[J]. 水科学进展, 2020, 31(2): 153−161.
    [17] 张建云, 刘九夫, 金君良, 等. 青藏高原水资源演变与趋势分析[J]. 中国科学院院刊, 2019, 34(11): 1264−1273.
    [18] 中华人民共和国生态环境部. 2019中国生态环境状况公报[R]. 2020.
    [19] 王谦, 高红杰. 我国城市黑臭水体治理现状、问题及未来方向[J]. 环境工程学报, 2019, 13(3): 507−510. doi:  10.12030/j.cjee.201901166
    [20] Trémolet S, Kampa E, Lago M, et al. Investing in Nature for European Water Security[R]. London: The Nature Conservancy, Ecologic Institute and ICLEI, 2019.
    [21] Grizzetti B, Lanzanova D, Liquete C, et al. Assessing Water Ecosystem Services for Water Resource Management[J]. Environmental Science & Policy, 2016, 61: 194−203.
    [22] Cao S X, Chen L, Yu X X. Impact of China’s Grain for Green Project on the Landscape of Vulnerable Arid and Semi-arid Agricultural Regions: A Case Study in Northern Shaanxi Province[J]. Journal of Applied Ecology, 2009, 46(3): 536−543. doi:  10.1111/j.1365-2664.2008.01605.x
    [23] CWP. Manual 3: Urban Stormwater Retrofit Practices Manual: Urban Subwatershed Restoration Manual Series[R]. Ellicott City: Center for Watershed Protection, 2007.
    [24] Meli P, Benayas J M R, Balvanera P, et al. Restoration Enhances Wetland Biodiversity and Ecosystem Service Supply, but Results are Context-Dependent: A Meta-Analysis[J]. PLoS One, 2014, 9(4): e93507. doi:  10.1371/journal.pone.0093507
    [25] Opperman J J. A Flood of Benefits: Using Green Infrastructure to Reduce Flood Risks[R]. Arlington: The Nature Conservancy, 2014.
    [26] 白鑫, 廖劲杨, 胡红, 等. 保护性耕作对水土保持的影响[J]. 农业工程, 2020, 10(8): 76−82. doi:  10.3969/j.issn.2095-1795.2020.08.024
    [27] Sabourin J F, Wilson H C. Twenty-year Performance Evaluation of Grass Swale and Perforated Pipe Drainage Systems[J]. Proceedings of the Water Environment Federation, 2011, 2011(10): 6035−6059. doi:  10.2175/193864711802766254
    [28] Hansen K, Rosenqvist L, Vesterdal L, et al. Nitrate Leaching from Three Afforestation Chrono Sequences on Former Arable Land in Denmark[J]. Global Change Biology, 2007, 13(6): 1250−1264. doi:  10.1111/j.1365-2486.2007.01355.x
    [29] TNC. The Case for Green Infrastructure: Joint-Industry White Paper[R]. Arlington: The Nature Conservancy, Dow Chemical, Shell, Swiss Re, Unilever, 2013.
    [30] Osmond D L, Gilliam J W, Evans R O. Riparian Buffers and Controlled Drainage to Reduce Agricultural Nonpoint Source Pollution[R]. Raleigh: NC Agricultural Research Service, NC State University, 2002.
    [31] Halliday S J, Skeffington R A, Wade A J, et al. Riparian Shading Controls Instream Spring Phytoplankton and Benthic Algal Growth[J]. Environmental Science:Processes & Impacts, 2016, 18(6): 677−689.
    [32] Stagnari F, Ramazzotti S, Pisante M. Conservation Agriculture: A Different Approach for Crop Production through Sustainable Soil and Water Management: A Review[M]. E. Lichtfouse (ed. ), Organic Farming, Pest Control and Remediation of Soil Pollutants. Sustainable Agriculture Reviews, Vol. 1. Dordrecht: Springer, 2009, 1: 55-83.
    [33] Vystavna Y, Frkova Z, Marchand L, et al. Removal Efficiency of Pharmaceuticals in a Full Scale Constructed Wetland in East Ukraine[J]. Ecological Engineering, 2017, 108(A): 50−58.
    [34] Abell R, Asquith N, Boccaletti G, et al. Beyond the Source: The Environmental, Economic and Community Benefits of Source Water Protection[J]. The Nature Conservancy, 2017.
    [35] Echavarria M. Financing Watershed Conservation: The FONAG Water Fund in Quito, Ecuador[M]. Routledge: Selling Forest Environmental Services, 2012: 105-115.
    [36] Joslin A J, Jepson W E. Territory and Authority of Water Fund Payments for Ecosystem Services in Ecuador’s Andes[J]. Geoforum, 2018, 91: 10−20. doi:  10.1016/j.geoforum.2018.02.016
  • 加载中
图(3)
计量
  • 文章访问数:  642
  • HTML全文浏览量:  221
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-28
  • 修回日期:  2021-09-18
  • 录用日期:  2021-10-29
  • 网络出版日期:  2022-01-27
  • 刊出日期:  2021-11-02

目录

    /

    返回文章
    返回