Estimation and Spatio-Temporal Variation of Potential Evapotranspiration in the North-South Transitional Zone
-
摘要: 为探究中国南北过渡带主体部分秦岭—大巴山的潜在蒸散发计算方法的适用性、时空变化特征以及其影响因素,本研究以FAO56 Penman-Monteith(P-M)方法为基准,选取了4种不同潜在蒸散发量的估算方法,对比研究各种方法在中国南北过渡带的适用性。以P-M法得到的估算结果为依据,运用Mann-Kendall趋势检验等方法,进行秦岭—大巴山地区潜在蒸散发量时空分布特征的研究,并分析了秦岭—大巴山地区海拔对潜在蒸散发的影响。研究结果表明,在本研究所选的估算方法中,以Priestley-Taylor(P-T)估算方法适用性最好,Hargreaves(Har)方法次之,Thornthwaite (Tho)估算方法适用性最差;研究区年潜在蒸发量最小值(800 mm)出现在都江堰站,最大值(1 120 mm)出现在三门峡站,研究区季节潜在蒸散发量夏季(330~430 mm)最多,冬季(100 mm)最少;年潜在蒸散发量(PET)呈现由西南向东北逐渐增加的变化态势;M-K趋势计算年潜在蒸散发量所得Z值最大值(4.43)出现在合作站,最小值(-4.77)出现在三门峡站,从总体上看,研究区西北部的年潜在蒸散发量(PET)呈现显著增加趋势,而东南、东北及中部偏北地区呈现显著减少趋势;各站点的蒸散发量随着海拔的升高而减少,但海拔对蒸散发量的影响随着时间逐渐减弱。Abstract: In order to investigate the applicability, spatio-temporal variability, and the influencing factors of the potential evapotranspiration calculation methods in the Qinling-Daba Mountains, the main part of the north-south transitional zone in China, four different potential evapotranspiration estimation methods were selected and compared to investigate their applicability in the north-south transitional zone in China, using the FAO56 Penman-Monteith (P-M) method as a benchmark. Based on the estimation results obtained by the P-M method, the spatial and temporal distribution characteristics of potential evapotranspiration in the Qinling-Daba Mountains were studied and the effect of elevation on potential evapotranspiration in the Qinling-Daba Mountains was analyzed by using the Mann-Kendall trend test. The results show that the Priestley-Taylor (P-T) method is the best, the Hargreaves (Har) method is the second, and the Thornthwaite (Tho) method is the worst among the selected estimation methods. The minimum value of annual potential evapotranspiration in the study area is 800 mm at Dujiangyan station, and the maximum value is 1 120 mm at Sanmenxia station; the seasonal potential evapotranspiration in the study area is the highest in summer (330-430 mm) and the lowest in winter (100 mm); the annual potential evapotranspiration (PET) shows a gradual increase from southwest to northeast; the maximum value of Z value (4.43) obtained from the M-K trend calculation of annual potential evapotranspiration is at the Hezuo station, and the minimum value (−4.77) is at Sanmenxia station. In general, the annual potential evapotranspiration (PET) in the northwestern part of the study area shows a significant increasing trend, while the southeastern, northeastern and central-northern areas show a significant decreasing trend; the evapotranspiration at each station decreases with increasing altitude, but the effect of altitude on evapotranspiration gradually decreases with time.
-
表 1 4种潜在蒸散发量估算方法与P-M方法多年月平均值差异性对比
Table 1. Comparison of multi-year monthly mean difference between four potential evapotranspiration methods and P-M method
站点 评价指标 I-A Har P-T Tho 临夏 MER 40.40% 15.19% 14.05% 60.81% R 0.99 1.00 1.00 0.96 若尔盖 MER 48.97% 20.37% 18.82% 68.63% R 0.98 1.00 1.00 0.93 武功 MER 36.63% 15.28% 16.58% 42.34% R 0.99 1.00 0.99 0.97 房县 MER 40.36% 15.41% 16.07% 36.22% R 0.99 0.99 1.00 0.97 三门峡 MER 15.04% 15.77% 27.05% 50.02% R 1.00 1.00 0.99 0.96 奉节 MER 27.58% 13.22% 15.24% 27.97% R 0.99 0.98 1.00 0.98 表 2 典型站点各季节潜在蒸散发量4种估算方法与P-M法差异性对比
Table 2. Comparison of seasonal potential evapotranspiration difference between four estimating methods and P-M method for four typical sites
季节 站点 MRE R I-A Har P-T Tho I-A Har P-T Tho 春 临夏 31.12% 0.73% 13.51% 56.71% 0.79 0.90 0.88 0.69 若尔盖 52.81% 8.98% 22.31% 71.15% 0.68 0.87 0.89 0.76 武功 33.01% 19.45% 5.33% 41.13% 0.84 0.86 0.85 0.67 房县 36.01% 29.09% 1.01% 37.18% 0.93 0.87 0.95 0.82 三门峡 11.24% 2.33% 20.74% 49.17% 0.85 0.70 0.76 0.65 奉节 26.81% 12.07% 5.11% 31.86% 0.75 0.15 0.64 0.21 夏 临夏 17.01% 10.91% 22.35% 32.62% 0.89 0.84 0.93 0.50 若尔盖 31.17% 2.13% 27.67% 35.42% 0.88 0.86 0.94 0.54 武功 7.98% 13.83% 2.85% 10.65% 0.95 0.87 0.96 0.72 房县 16.42% 20.52% 11.77% 5.51% 0.98 0.89 0.97 0.74 三门峡 1.32% 1.55% 2.58% 16.26% 0.92 0.73 0.90 0.71 奉节 8.59% 5.97% 4.61% 3.66% 0.91 0.26 0.89 0.25 秋 临夏 33.02% 9.67% 19.83% 43.32% 0.94 0.78 0.96 0.27 若尔盖 42.19% 19.24% 21.23% 57.24% 0.82 0.85 0.93 0.42 武功 30.89% 1.57% 4.18% 19.70% 0.94 0.83 0.91 0.24 房县 31.23% 9.39% 2.17% 10.27% 0.93 0.89 0.93 0.36 三门峡 11.94% 14.07% 18.82% 31.24% 0.91 0.71 0.83 0.33 奉节 16.11% 11.81% 10.77% 6.61% 0.67 0.26 0.54 0.05 冬 临夏 75.18% 30.19% 2.21% 99.94% 0.67 0.76 0.88 0.12 若尔盖 66.96% 44.23% 6.59% 100.00% 0.37 0.82 0.73 - 武功 69.21% 12.53% 42.42% 92.61% 0.85 0.72 0.34 0.33 房县 71.73% 2.19% 35.11% 81.83% 0.81 0.70 0.57 0.42 三门峡 31.85% 34.88% 58.39% 94.33% 0.78 0.63 0.07 0.33 奉节 53.25% 18.23% 33.91% 63.09% 0.32 −0.14 −0.37 −0.23 表 3 典型站点4种估算方法与P-M方法年潜在蒸散发量估算值差异性对比
Table 3. Comparison of annual potential evapotranspiration difference between four estimating methods and P-M method
站点 评价指标 I-A Har P-T Tho MER R MER R MER R MER R 临夏 30.36% 0.74 2.25% 0.76 17.23% 0.86 48.68% 0.54 若尔盖 44.19% 0.59 11.18% 0.84 20.65% 0.86 58.08% 0.64 武功 25.80% 0.92 11.00% 0.71 5.23% 0.92 28.55% 0.38 房县 30.73% 0.93 18.99% 0.78 1.86% 0.93 22.95% 0.60 三门峡 9.98% 0.91 6.97% 0.49 16.96% 0.84 37.08% 0.41 奉节 20.28% 0.71 8.79% −0.17 8.06% 0.60 19.04% −0.23 表 4 研究区32个站点年潜在蒸散发量M-K检验Z值结果及变化趋势
Table 4. Z-value and trends of annual evapotranspiration from M-K test at 32 sites on study area
序号 站名 Z值 变化趋势 序号 站名 Z值 变化趋势 1 临夏 0.74 不显著增加 17 石泉 −2.26 显著减少 2 临洮 3.63 显著增加 18 安康 −1.02 不显著减少 3 合作 4.43 显著增加 19 房县 −0.54 不显著减少 4 岷县 4.25 显著增加 20 老河口 0.40 不显著增加 5 若尔盖 3.66 显著增加 21 巴东 −2.86 显著减少 6 马尔康 −1.12 不显著减少 22 钟样 −1.74 显著减少 7 松潘 0.12 不显著增加 23 宜昌 −2.79 显著减少 8 都江堰 −1.46 不显著减少 24 三门峡 −4.77 显著减少 9 绵阳 2.28 显著增加 25 卢氏 −2.11 显著减少 10 万源 −0.20 不显著减少 26 栾川 1.12 不显著增加 11 巴中 0.02 不显著增加 27 郑州 −2.86 显著减少 12 红原 2.28 显著增加 28 许昌 −2.53 显著减少 13 武功 −3.28 显著减少 29 西峡 0.45 不显著增加 14 华山 0.70 不显著增加 30 南阳 −0.94 不显著减少 15 佛坪 −3.55 显著减少 31 宝丰 −4.53 显著减少 16 商县 −2.04 显著减少 32 奉节 −4.43 显著减少 表 5 研究区各站点趋势统计
Table 5. The statistics of trends at sites in the study area
趋势 显著减少 不显著减少 不显著增加 显著增加 统计个数 13 6 7 6 -
[1] 杨建平, 丁永建, 陈仁升, 等. 近50年来中国干湿气候界线的10年际波动[J]. 地理学报, 2002, 57(6): 655−661. doi: 10.3321/j.issn:0375-5444.2002.06.004 [2] 马柱国, 华丽娟, 任小波. 中国近代北方极端干湿事件的演变规律[J]. 地理学报, 2003, 58(增刊1): 69−74. doi: 10.11821/xb20037s008 [3] 王菱, 谢贤群, 李运生, 等. 中国北方地区40年来湿润指数和气候干湿带界线的变化[J]. 地理研究, 2004, 23(1): 45−54. doi: 10.3321/j.issn:1000-0585.2004.01.006 [4] 郭雯雯, 黄生志, 赵静, 等. 渭河流域潜在蒸散发时空演变与驱动力量化分析[J]. 农业工程学报, 2021, 37(3): 81−89. doi: 10.11975/j.issn.1002-6819.2021.03.010 [5] 水利部水资源研究及区划办公室, 全国水资源初步成果汇总技术小组. 中国水资源初步评价[M]. 北京: 水利部, 1981: 48-51. [6] Doorenbos J, Pruitt W O. Guidelines for Predicting Crop Water Requirements. Food and Organization United Nations[R]. FAO Irrigation and Drainage Paper 24, 1977: 179. [7] 周晓东, 朱启疆, 孙中平, 等. 中国荒漠化气候类型划分方法的初步探讨[J]. 自然灾害学报, 2002, 11(2): 125−131. doi: 10.3969/j.issn.1004-4574.2002.02.022 [8] 常丽娜, 赵新全. 三江源草地多功能目标管理与自然保护地建设[J]. 自然保护地, 2022, 2(2): 1−8. doi: 10.12335/2096-8981.2022010402 [9] 张百平, 余付勤, 王晶, 等. 西秦岭自然保护的地位与意义[J]. 自然保护地, 2021, 1(2): 31−37. doi: 10.12335/2096-8981.2021012101 [10] 国家气象信息中心[DB/OL]. http://www.nmic.gov.cn/National Weather Information Center [DB/OL]. http://www.nmic.gov.cn/. [11] 伍海, 夏军, 赵玲玲, 等. 变化环境下12种潜在蒸散发估算方法在不同干湿区的适用性[J]. 南水北调与水利科技(中英文), 2021, 19(1): 1−11. [12] Allen R G, Pereira L S, Raes D, et al. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56[R]. FAO, 1998. [13] Irmak S, Irmak A, Allen R G, et al. Solar and Net Radiation-Based Equations to Estimate Reference Evapotranspiration in Humid Climates[J]. Journal of Irrigation and Drainage Engineering, 2003, 129(5): 336−347. doi: 10.1061/(ASCE)0733-9437(2003)129:5(336) [14] 秦孟晟, 郝璐, 施婷婷, 等. 秦淮河流域五种参考作物蒸散量估算方法的比较及改进[J]. 中国农业气象, 2016, 37(4): 390−399. doi: 10.3969/j.issn.1000-6362.2016.04.002 [15] de Oliveira Aparecido L E, de Meneses K C, Lorençone P A, et al. Climate Classification by Thornthwaite (1948) Humidity Index in Future Scenarios for Maranhão State, Brazil[J]. Environment, Development and Sustainability, 2022. DOI: 10.1007/s10668-021-02082-9. [16] Thornthwaite C W, Mather J R. The Water Budget and Its Use in Irrigation[M]// “Water”: The yearbook of Agriculture. US Department of Agriculture Washington DC, 1995: 346-358. [17] Li S, Kang S Z, Zhang L, et al. Evaluation of Six Potential Evapotranspiration Models for Estimating Crop Potential and Actual Evapotranspiration in Arid Regions[J]. Journal of Hydrology, 2016, 543: 450−461. doi: 10.1016/j.jhydrol.2016.10.022 [18] Xu C Y, Singh V P. Evaluation of Three Complementary Relationship Evapotranspiration Models by Water Balance Approach to Estimate Actual Regional Evapotranspiration in Different Climatic Regions[J]. Journal of Hydrology, 2005, 308(1/2/3/4): 105−121. [19] 李天生, 夏军, 匡洋, 等. 不同潜在蒸散发估算方法在汉江流域中上游地区的适用性研究[J]. 南水北调与水利科技, 2017, 15(6): 1−10. [20] Yue S, Pilon P, Cavadias G. Power of the Mann-Kendall and Spearman’s Rho Tests for Detecting Monotonic Trends in Hydrological Series[J]. Journal of Hydrology, 2002, 259(1/2/3/4): 254−271. [21] 张晓琳, 熊立华, 林琳, 等. 五种潜在蒸散发公式在汉江流域的应用[J]. 干旱区地理, 2012, 35(2): 229−237. [22] 肖曼珍, 朱春苗, 宋小燕, 等. 我国南北过渡带水面蒸发的时空变化及趋势预测[J]. 南水北调与水利科技(中英文), 2021, 19(2): 263−272. [23] 果华雯, 张元伟, 宋小燕, 等. 中国南北过渡带干旱时空变化[J]. 南水北调与水利科技(中英文), 2020, 18(2): 79−85,158. [24] 张杨, 邱国玉, 鄢春华, 等. 近50年来海拔高度对参考蒸散发变化趋势的影响研究: 以四川省为例[J]. 生态环境学报, 2018, 27(12): 2208−2216. -